Solvent extraction of antioxidants from steam exploded sugarcane bagasse and enzymatic convertibility of the solid fraction.

نویسندگان

  • Jingbo Li
  • Jianghai Lin
  • Wenjuan Xiao
  • Yingxue Gong
  • Mingming Wang
  • Pengfei Zhou
  • Zehuan Liu
چکیده

Solvent extraction of steam exploded lignocellulosic biomass may be a potential way to obtain antioxidative extracts and to enhance the enzymatic convertibility of the solid residue. Boiling solvent extraction (BSE) showed higher solid and phenolic yields than room temperature extraction. Solubilities of phenolics and sugars were higher in anhydrous ethanol (AE) and deionized water (DW) than in ethyl acetate under each individual extraction condition. The antioxidant activities of the AE and DW extract obtained under BSE were better than those of 10mM vitamin C. Conversion of the solid fractions into reducing sugar using Celluclast 1.5L and Novozym 188 after AE and DW extraction was 95.13% and 92.97%, respectively, higher than that obtained with SESB (88.95%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between Wet Oxidation and Steam Explosion as Pretreatment Methods for Enzymatic Hydrolysis of Sugarcane Bagasse

Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised o...

متن کامل

Methane Potential and Enzymatic Saccharification of Steam-exploded Bagasse

To evaluate the biofuel potential of bagasse, an abundant co-product in sugarcane-based industries, the effect of steam explosion on the efficiency of enzymatic saccharification and anaerobic digestion was studied. Bagasse was steam exploded at four different severity levels, and the impact of pretreatment was evaluated by analyzing the release of glucose after enzymatic saccharification with C...

متن کامل

Amores, Ballesteros, Manzanares, Sáez, Michelena and Ballesteros Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion

Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion 25 ABSTRACT Bioethanol is an alternative renewable fuel that can be produced from cellulosic biomass through hydrolysis and fermentation based processes. Sugarcane bagasse constitutes a potential lignocellulosic substrate for bioethanol production, since it has high sugar content and is a renewable, cheap and readily availa...

متن کامل

Liquid Hot Water and Steam Explosion Pretreatment of Sugarcane Bagasse for Enzyme Production by a Sequential Solid-state and Submerged Method

RESUMO – The use of sugarcane bagasse on enzyme production is a promising alternative for reducing the costs of second generation ethanol. However, a pretreatment step is required to increase cellulose and hemicellulose accessibility. Here, the influence of Liquid Hot Water (LHW) and steam explosion (SE) pretreatments in cultivations with three Aspergillus strains were investigated. A new seque...

متن کامل

Kinetic Study of the Enzymatic Hydrolysis of Sugarcane Bagasse

This work presents a kinetic study of the enzymatic hydrolysis of three cellulosic substrates: filter paper (FP), used as a low recalcitrance substrate model; steam exploded sugarcane bagasse (SB); and weak acid pretreated SB (1:20 dry bagasse:H2SO4 solution 1% w/w), the last two delignified with 4% NaOH (w/w). The influence of substrate concentration was assessed in hydrolysis experiments in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2013